452 research outputs found

    Approximation and Streaming Algorithms for Projective Clustering via Random Projections

    Full text link
    Let PP be a set of nn points in Rd\mathbb{R}^d. In the projective clustering problem, given k,qk, q and norm ρ[1,]\rho \in [1,\infty], we have to compute a set F\mathcal{F} of kk qq-dimensional flats such that (pPd(p,F)ρ)1/ρ(\sum_{p\in P}d(p, \mathcal{F})^\rho)^{1/\rho} is minimized; here d(p,F)d(p, \mathcal{F}) represents the (Euclidean) distance of pp to the closest flat in F\mathcal{F}. We let fkq(P,ρ)f_k^q(P,\rho) denote the minimal value and interpret fkq(P,)f_k^q(P,\infty) to be maxrPd(r,F)\max_{r\in P}d(r, \mathcal{F}). When ρ=1,2\rho=1,2 and \infty and q=0q=0, the problem corresponds to the kk-median, kk-mean and the kk-center clustering problems respectively. For every 0<ϵ<10 < \epsilon < 1, SPS\subset P and ρ1\rho \ge 1, we show that the orthogonal projection of PP onto a randomly chosen flat of dimension O(((q+1)2log(1/ϵ)/ϵ3)logn)O(((q+1)^2\log(1/\epsilon)/\epsilon^3) \log n) will ϵ\epsilon-approximate f1q(S,ρ)f_1^q(S,\rho). This result combines the concepts of geometric coresets and subspace embeddings based on the Johnson-Lindenstrauss Lemma. As a consequence, an orthogonal projection of PP to an O(((q+1)2log((q+1)/ϵ)/ϵ3)logn)O(((q+1)^2 \log ((q+1)/\epsilon)/\epsilon^3) \log n) dimensional randomly chosen subspace ϵ\epsilon-approximates projective clusterings for every kk and ρ\rho simultaneously. Note that the dimension of this subspace is independent of the number of clusters~kk. Using this dimension reduction result, we obtain new approximation and streaming algorithms for projective clustering problems. For example, given a stream of nn points, we show how to compute an ϵ\epsilon-approximate projective clustering for every kk and ρ\rho simultaneously using only O((n+d)((q+1)2log((q+1)/ϵ))/ϵ3logn)O((n+d)((q+1)^2\log ((q+1)/\epsilon))/\epsilon^3 \log n) space. Compared to standard streaming algorithms with Ω(kd)\Omega(kd) space requirement, our approach is a significant improvement when the number of input points and their dimensions are of the same order of magnitude.Comment: Canadian Conference on Computational Geometry (CCCG 2015

    Counting tropical elliptic plane curves with fixed j-invariant

    Full text link
    In complex algebraic geometry, the problem of enumerating plane elliptic curves of given degree with fixed complex structure has been solved by R.Pandharipande using Gromov-Witten theory. In this article we treat the tropical analogue of this problem, the determination of the number of tropical elliptic plane curves of degree d and fixed ``tropical j-invariant'' interpolating an appropriate number of points in general position. We show that this number is independent of the position of the points and the value of the j-invariant and that it coincides with the number of complex elliptic curves. The result can be used to simplify Mikhalkin's algorithm to count curves via lattice paths in the case of rational plane curves.Comment: 34 pages; minor changes to match the published versio

    Polynomial-Sized Topological Approximations Using The Permutahedron

    Get PDF
    Classical methods to model topological properties of point clouds, such as the Vietoris-Rips complex, suffer from the combinatorial explosion of complex sizes. We propose a novel technique to approximate a multi-scale filtration of the Rips complex with improved bounds for size: precisely, for nn points in Rd\mathbb{R}^d, we obtain a O(d)O(d)-approximation with at most n2O(dlogk)n2^{O(d \log k)} simplices of dimension kk or lower. In conjunction with dimension reduction techniques, our approach yields a O(polylog(n))O(\mathrm{polylog} (n))-approximation of size nO(1)n^{O(1)} for Rips filtrations on arbitrary metric spaces. This result stems from high-dimensional lattice geometry and exploits properties of the permutahedral lattice, a well-studied structure in discrete geometry. Building on the same geometric concept, we also present a lower bound result on the size of an approximate filtration: we construct a point set for which every (1+ϵ)(1+\epsilon)-approximation of the \v{C}ech filtration has to contain nΩ(loglogn)n^{\Omega(\log\log n)} features, provided that ϵ<1log1+cn\epsilon <\frac{1}{\log^{1+c} n} for c(0,1)c\in(0,1).Comment: 24 pages, 1 figur
    corecore